Convergence of functions of self-adjoint operators and applications
نویسندگان
چکیده
منابع مشابه
Functions of Perturbed Noncommuting Self-adjoint Operators
Abstract. We consider functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B ∞,1 (R), then we have the following Lipschitz type estimate in the trace norm: ‖f(A1, B1)− f(A2, B2)‖S1 ≤ const(‖A1 −A2‖S1 + ‖B1 −B2‖S1). However, the condition f ∈ B ∞,1 (R) does not imply the Lipschitz ...
متن کاملFunctions of self-adjoint operators in ideals of compact operators
For self-adjoint operators A,B, a bounded operator J , and a function f : R → C, we obtain bounds in quasi-normed ideals of compact operators for the difference f(A)J − Jf(B) in terms of the operator AJ − JB. The focus is on functions f that are smooth everywhere except for finitely many points. A typical example is the function f(t) = |t|γ with γ ∈ (0, 1). The obtained results are applied to d...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولScattering Matrix and Functions of Self-adjoint Operators
In the scattering theory framework, we consider a pair of operators H0, H. For a continuous function φ vanishing at infinity, we set φδ(·) = φ(·/δ) and study the spectrum of the difference φδ(H − λ)− φδ(H0 − λ) for δ → 0. We prove that if λ is in the absolutely continuous spectrum of H0 and H, then the spectrum of this difference converges to a set that can be explicitly described in terms of (...
متن کاملFunctions of Perturbed Tuples of Self-adjoint Operators
Abstract. We generalize earlier results of [2], [3], [6], [13], [14] to the case of functions of n-tuples of commuting self-adjoint operators. In particular, we prove that if a function f belongs to the Besov space B ∞,1(R ), then f is operator Lipschitz and we show that if f satisfies a Hölder condition of order α, then ‖f(A1 · · · , An)− f(B1, · · · , Bn)‖ ≤ constmax1≤j≤n ‖Aj −Bj‖ α for all n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 2016
ISSN: 0214-1493
DOI: 10.5565/publmat_60216_09